Integrable systems on semidirect product Lie groups
نویسندگان
چکیده
منابع مشابه
Integrable Hamiltonian systems on Lie groups : Kowalewski type
The contributions of Sophya Kowalewski to the integrability theory of the equations for the heavy top extend to a larger class of Hamiltonian systems on Lie groups; this paper explains these extensions, and along the way reveals further geometric significance of her work in the theory of elliptic curves. Specifically, in this paper we shall be concerned with the solutions of the following diffe...
متن کاملGeodesic flows on semidirect-product Lie groups: geometry of singular measure-valued solutions
The EPDiff equation (or dispersionless Camassa-Holm equation in 1D) is a well known example of geodesic motion on the Diff group of smooth invertible maps (diffeomorphisms). Its recent two-component extension governs geodesic motion on the semidirect product Diff sF , where F denotes the space of scalar functions. This paper generalizes the second construction to consider geodesic motion on Dif...
متن کاملIntegrable G-Strands on semisimple Lie groups
CNRS / Laboratoire de Météorologie Dynamique, École Normale Supérieure, Paris, France. Partially supported by a Projet Incitatif de Recherche contract from the Ecole Normale Supérieure de Paris. [email protected] Department of Mathematics, Imperial College London. London SW7 2AZ, UK. Partially supported by the European Research Council’s Advanced Grant 267382 FCCA. [email protected] Secti...
متن کاملSemidirect product decomposition of Coxeter groups
Let (W,S) be a Coxeter system, let S = I ∪ J be a partition of S such that no element of I is conjugate to an element of J , let J̃ be the set of WI -conjugates of elements of J and let W̃ be the subgroup of W generated by J̃ . We show that W = W̃ ⋊WI and that J̃ is the canonical set of Coxeter generators of the reflection subgroup W̃ of W . We also provide algebraic and geometric conditions for an e...
متن کاملBiharmonic Maps into Compact Lie Groups and the Integrable Systems
In this paper, the reduction of biharmonic map equation in terms of the Maurer-Cartan form for all smooth map of an arbitrary compact Riemannian manifold into a compact Lie group (G, h) with bi-invariant Riemannian metric h is obtained. By this formula, all biharmonic curves into compaqct Lie groups are determined, and all the biharmonic maps of an open domain of R with the conformal metric of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical
سال: 2014
ISSN: 1751-8113,1751-8121
DOI: 10.1088/1751-8113/47/20/205206